Optimization of peptide hydroxamate inhibitors of insulin-degrading enzyme reveals marked substrate-selectivity

J Med Chem. 2013 Mar 28;56(6):2246-55. doi: 10.1021/jm301280p. Epub 2013 Mar 15.

Abstract

Insulin-degrading enzyme (IDE) is an atypical zinc-metallopeptidase that degrades insulin and the amyloid ß-protein and is strongly implicated in the pathogenesis of diabetes and Alzheimer's disease. We recently developed the first effective inhibitors of IDE, peptide hydroxamates that, while highly potent and selective, are relatively large (MW > 740) and difficult to synthesize. We present here a facile synthetic route that yields enantiomerically pure derivatives comparable in potency to the parent compounds. Through the generation of truncated variants, we identified a compound with significantly reduced size (MW = 455.5) that nonetheless retains good potency (ki = 78 ± 11 nM) and selectivity for IDE. Notably, the potency of these inhibitors was found to vary as much as 60-fold in a substrate-specific manner, an unexpected finding for active site-directed inhibitors. Collectively, our findings demonstrate that potent, small-molecule IDE inhibitors can be developed that, in certain instances, can be highly substrate selective.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Drug Design*
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / metabolism
  • Enzyme Inhibitors / pharmacology
  • Humans
  • Hydroxamic Acids / chemical synthesis
  • Hydroxamic Acids / chemistry*
  • Hydroxamic Acids / metabolism
  • Hydroxamic Acids / pharmacology*
  • Insulysin / antagonists & inhibitors*
  • Insulysin / chemistry
  • Insulysin / metabolism*
  • Molecular Docking Simulation
  • Peptides / chemistry*
  • Protein Conformation
  • Stereoisomerism
  • Substrate Specificity

Substances

  • Enzyme Inhibitors
  • Hydroxamic Acids
  • Peptides
  • Insulysin